Yearly Archives: 2016

IR Light Follower for Wall-E2, Part V

Posted 04 November 2016

As a result of my now extensive testing with the OSEPP IR Follwer module, I have become convinced that it’s just not going to work for my intended IR homing application.  As shown in the following plot (copied from a previous post), the six detectors each have a usable spatial detection width of about 10-15 º.  However, because they are mounted to cover  a 180 º, there is a ‘dead zone’ of about 20 º between each detector position.

Results from fourth heading tests on bench-top range. For this test, the idea was to determine the approximate beamwidth of each detector

Results from fourth heading tests on bench-top range. For this test, the idea was to determine the approximate beamwidth of each detector

If the IR homing beam falls into one of these dead zones, it will be very difficult to generate an appropriate steering value, so steering behavior will probably be more like a ‘bang-bang’ setup than something that can be used to home in on my planned charging station.

The good news is I learned  a lot during this exercise, and one of the things I learned is that I don’t really need most of the circuitry on  the OSEPP module.  I wound up using only the analog outputs from the OSEPP module, and according to the OSEPP schematic shown below, this is just the raw detector voltage.

OSEPP IR Follower schematic. Note the analog out is just the raw detector voltage

OSEPP IR Follower schematic. Note the analog out is just the raw detector voltage

So, using my trusty PowerSpec 3D Pro 3D printer I should be able to fabricate my own IR detector array, with the detectors spaced closely enough so that their half-power beam edges overlap significantly. That should mean that I can determin the IR homing beam angle-of-arrival (AOA) within just a few degrees, which in turn should mean much more accurate and continuous steering information.

 

Stay tuned!

Frank

 

IR Light Follower for Wall-E2, Part IV

Posted 02 November 2016

After arriving at a ‘sunshade’ design that completely blocked overhead IR source interference, I went back to my bench-top range to re-do the directionality testing.  To do this I printed out  a scaled copy of my 4-Inch Heading Circle graphic from a previous project, and modified it to serve as a heading indicator for the IR follower tests, as shown below

Heading circle image, modified for heading tests. Penciled numbers are detector designators

Heading circle image, modified for heading tests. Penciled numbers are detector designators

Heading test setup. IR emitter LED is clamped to the bench vise in the background

Heading test setup. IR emitter LED is clamped to the bench vise in the background.

To perform the tests, I created a small Arduino program to read and print out the analog readings from   all six IR photodetectors, and recorded the results in a Excel spreadsheet.  Then, using Excel’s superb graphing tools, I plotted the outputs, as shown below.

Results from first heading tests on bench-top range. Minimum values for each photodetector are highlighted

Results from first heading tests on bench-top range. Minimum values for each photodetector are highlighted

As can be seen in the above results, the photodetectors read around 700-900 when no IR is present, and 50-60 when the detector aligned with the IR beam.  As can be seen, the heading response for each individual detector was rather narrow, with the minimum occurring at only one heading, with essentially zero detection on either side of the minimum value.   These results are a bit problematic, as the wide ‘dead zones’ between detection angles  may make it difficult to derive good motor steering commands for IR homing.

To determine if the above ‘dead zone’ issue is due to the inherent directivity of the detectors or to the optical isolation provided by the sunshade vanes, I decided to manually pare back the isolation vanes in small steps to determine their influence on the dead zones, and to determine if I could do so without adversely impacting overhead IR source suppression.  As a control, I took A/D readings with the LED emitter disabled, but with one overhead LED bench light turned on (this is known to be a strong IR emitter), as shown below:

A/D reading test with LED emitter OFF and one LED bench light ON. Note black foam piece blocking reflection from power strip in background

A/D reading test with LED emitter OFF and one LED bench light ON. Note black foam piece blocking reflection from power strip in background

With this setup, I got the following readings with the IR LED disabled and the bench light ON:

LED1 LED2 LED3 LED4 LED5 LED6
712   796     847    864    731   818

Next, I removed 8mm from the central sunshade vane, as shown in the following photo, and repeated the heading test.  The results don’t vary significantly from the first one, and lead me to wonder if the vanes are actually doing anything, or it just seemed that way because they were combined with a larger overhang going from sunshade V4 to V6.

Central vane length reduced by 8mm

Central vane length reduced by 8mm

Results from second heading tests on bench-top range, with central vane length reduced by 8mm. Minimum values for each photodetector are highlighted

Results from second heading tests on bench-top range, with central vane length reduced by 8mm. Minimum values for each photodetector are highlighted

Since the results from the test with 8mm removed from the central vane didn’t seem to be much different from the original, I removed another 4-5 mm so the front edge of the central vane matched the outer edge of the IR follower PCB, and repeated the test, as shown below

Central vane length reduced by 12mm

Central vane length reduced by 12mm

Results from third heading tests on bench-top range (12mm removed from central vane). Minimum values for each photodetector are highlighted

Results from third heading tests on bench-top range (12mm removed from central vane). Minimum values for each photodetector are highlighted

So, it is clear from the above that at least the central vane does not significantly alter detector behavior.  After this, I decided to try and determine the approximate beamwidth of each detector.  For the beam-edge point, I used an arbitrary reading of 200, as shown in the following Excel table and plot.

Results from fourth heading tests on bench-top range. For this test, the idea was to determine the approximate beamwidth of each detector

Results from fourth heading tests on bench-top range. For this test, the idea was to determine the approximate beamwidth of each detector

From the above, the approximate beamwidth for these detectors is about 10-15 deg.  Since the vanes are set 36 degrees apart, they are well outside the photodiode detection angle, so that explains why removing the central vane had no significant effect.  However, it does point up a potentially serious problem when attempting to use this arrangement for IR following; the photodiodes are set 36 degrees apart, with 15 degree beamwidths, so there will be a dead zone of approximately 20 degrees between each ‘live’ sector.  This has two negative implications:

  • My idea of mathematically blending detector readings to produce a continuous steering error term for motor drive probably won’t work, or won’t work very well
  • The narrow detector beamwidth may be susceptible to multipath effects, where a narrow detector beam intersects a spurious reflection term from the IR emitter.

The next step is to produce another version of the sunshade with all 5  vanes cut back to the edge of the PCB, to verify that detector behavior doesn’t depend on the vanes, and to try some  different IR emitters.  The IR LEDs I have on hand at the moment are also narrow (i.e. 10-15 deg) beamwidths, but  I have some 30 deg ones on order.  Also, the current full saturation detection range is only about 20 cm, so I want to try some higher power emitters to see if I can get the range up to something practical – like 1.5-2 m.

Stay tuned!

Frank

03 November 2016 Note:

After installing the new sunshade with all vanes cut back to the outer edge of the PCB as shown below, the bench-top detector response vs angle test was performed again, with basically identical results to the previous one. This shows that the vanes aren’t needed at all, at least not the portion that extends past the edge of the PCB.

Sunshade with all vanes pared back to outer edge of PCB

Sunshade with all vanes pared back to outer edge of PCB

04 November Note:

I acquired some Vishay TSAL6200 100mA  17 deg beamwidth IR LEDS (see spec sheet excerpt below), and ran some quick detection range tests with an LED current of about 60 mA, I was able to easily detect the IR signal at well over 1m.  This distance is probably sufficient for initial detection in time for IR homing into my planned charging station, so I am reasonably optimistic that this just might come together ;-).

Vishay high-power IR LED. Max forward current = 100mA

Vishay high-power IR LED. Max forward current = 100mA

 

 

 

 

IR Light Follower for Wall-E2, Part III

Posted 29 October 2016

In my last post, I described the evolution of an IR ‘sunshade’ for the OSEPP IR follower board.  The version 3 shade did indeed cut out most of the direct IR term from the overhead lighting, and most of the high-elevation multipath as well.

So, I set up some directional tests on my bench using an IR LED clamped in a small vise, with the OSEPP board sitting on a pad of post-it notes to achieve the proper elevation relative to the IR diode.  I then wrote a short Arduino program to print out the IR detector analog values, to see if the board was directive enough for use as part of a IR homing setup.

Benchtop directionality testing setup

Benchtop directionality testing setup.  The transmitting IR LED is visible in the background, clamped in my bench vise

Unfortunately, the initial test results were not what I hoped for.  Directionality response was erratic, with LED 1 (3 O-clock using the connector strip as 6 O-clock) responding better  when the board was oriented directly toward the IR led than when boresighted on the IR emitter.

Board orientation for max response on LED1 (LED1 is oriented toward 3 O-Clock)

Board orientation for max response on LED1 (LED1 is oriented toward 3 O-Clock)

By moving an opaque 1/2″ mixing stick around, I was able to discern that the odd response angle  It appears to be caused by IR energy being reflected from other internal structures on the board, although this doesn’t explain the lack of response on-boresight.  So, I decided to add some internal isolation vanes to the sunshade in a ‘vane attempt’ (pun intended) to suppress internal reflections, as shown in the following image.

Sunshade V4, with detector isolation vanes installed

Sunshade V4, with detector isolation vanes installed

02 November 2016 Post:

As it turned out, the above sunshade wasn’t quite big enough, so I wound up going through two more versions before arriving at one that completely blocked overhead IR sources.  The final design is shown below:

'Final' sunshade design

‘Final’ sunshade design

'Final' sunshade design. Note the manually cut away portions to clear PCB components

‘Final’ sunshade design. Note the manually cut away portions to clear PCB components

Final (hopefully) version of the sunshade, incorporating the PCB component clearance cutouts

Final (hopefully) version of the sunshade, incorporating the PCB component clearance cutouts

 

 

IR Light Follower for Wall-E2, Part II

Posted 28 October 2016

In my last post on this subject, I described the OSEPP IR Follower circuit I found at MicroCenter a few days ago, and my thoughts about incorporating it onto Wall-E2, my wall following robot.  After a few tests, it became apparent that the OSEPP circuit is quite sensitive to IR, and in fact the LED track lighting in my lab puts out enough IR to swamp out the signal from my test IR emitter.  So, I set about developing an ‘IR Shade’  to shield the detectors from elevated IR emitters (this turns out to be harder than I thought, due to IR multipath effects, but I digress).

So, my first attempt was a 3D printed ‘sunshade’ as shown below

IR Shade V1 - Top View: 1 mm thick, with approx 5 mm overhang

IR Shade V1 – Top View: 1 mm thick, with approx 5 mm overhang

IR Shade V1 - Side View: 1 mm thick, with approx 5 mm overhang

IR Shade V1 – Side View: 1 mm thick, with approx 5 mm overhang

This shade was 1mm thick, with about a 5 mm overhang on the IR detectors.  The shade is supported via two posts that mate with mounting holes on the OSEPP board.  When I tested this shade with my LED bench lamp, it basically didn’t do much.  Apparently 1mm is nowhere near enough material :-(.

Next, I tried placing some black electrical tape on the shade, as shown below.

IR Shade V1 with black electrical tape - Top View

IR Shade V1 with black electrical tape – Top View

The black electrical tape helped significantly, which is how I found out about the IR multipath problem.  Not only am I having to contend with blocking the direct path, reflections from nearby objects can also cause problems.

To address the direct path problem, I modified the shade design to be 3 mm thick, with 80% fill density vs the original 40%.  Hopefully this will be enough to cancel out the direct path, leaving only the multipath issue.  I don’t think there is much I can do about the multipath, other than assume that the field (i.e. the hallways in my house) won’t have that problem, as the lighting is mostly incandescent, and the ceilings are mostly 10 ft (3.3 m) away – we’ll see.

IR Shade V2. 3mm thickness, 80% fill

IR Shade V2. 3mm thickness, 80% fill

Even this one didn’t work as well as I’d hoped, so on to version 3 – with a larger overhang – about 8 mm.  This one blocked all the direct path IR and most of the multipath as well.  I’ll stick with this on for now, and move on to some steering tests.

The version 3 IR 'sunshade' with 7-8 mm overhang

The version 3 IR ‘sunshade’ with 7-8 mm overhang

 

 

IR Light Follower for Wall-E2, Part I

Posted Oct 26, 2016

As I was browsing among the aisles in my local MicroCenter store the other day, I ran across the OSEPP ‘IR Light Follower’, an Arduinio-compatible board featuring 6 IR photodiodes arrayed in a semicircle, as shown in the following screen grab.

IR follower description from the OSEPP website

IR follower description from the OSEPP website

After a moment of thinking ‘what the heck would you do with this?’, it hit me – I might be able to use this device to get Wall-E2, my wall following robot, to home in on my planned charging station by placing an IR emitter on the station, pointed along a likely wall-following approach route.  Then, when Wall-E2 detects the IR emitter, it could transition from wall-following to IR homing mode, and voila  –  capture by the charging station!  So, I decided to buy one and give it a whirl.

When I fired this guy up on my bench, I was surprised to find that ALL the small blue ‘IR detected’ LEDs lit up, as shown in the following photo

IR Follower on my bench.  Note all the indicator LED's are ON due to IR emissions from overhead LED lighting

IR Follower on my bench. Note all the indicator LED’s are ON due to IR emissions from overhead LED lighting

After a bit of head-scratching, I realized that the sensor board’s optics were being ‘flooded’ by my lab’s overhead LED track lighting (I had noticed this behavior on an earlier IR-related project, so it wasn’t too big of a leap).  After turning the room lights off, and rigging up an IR emitter a few inches away, I got the following results

Had to turn off the lights to eliminate IR flooding.  The blue LED at upper left is the power-on indicator.  IR emitter is at far right

Had to turn off the lights to eliminate IR flooding. The blue LED at upper left is the power-on indicator. IR emitter is at far right

At first blush, these initial results are very encouraging.  the board is obviously sensitive enough to detect the output from a  single IR LED emitter at a distance of about 6″, and has what appears to be reasonable directivity, but that’s about all I know at the moment.  I have no idea whether or not that will translate into sufficient tracking accuracy for charging station capture, but I do plan to find out!

The current idea is to mount the board on the front ‘shelf’ of the robot, as shown in the following photo

Planned location for the IR follower board.  I'll have to build a 'sunshade' to prevent IR flooding from overhead lights

Planned location for the IR follower board. I’ll have to build a ‘sunshade’ to prevent IR flooding from overhead lights

Of course, I’ll have to build some sort of sunshade to keep the sensor from being flooded by overhead lighting, but that’s what 3D printers are for ;-).

Stay tuned,

Frank

 

OSU/STEM Outreach Pulse Detector Project, Part II

Posted 22 October, 2016

In my last post on this subject, I discussed a modification to the OSU STEM Outreach’s Pulse Detector schematic to eliminate the dual 9V battery supply in favor of a single one, taking advantage of the LM358 op-amp’s single supply operation capability.  However, before actually recommending that the new arrangement be adopted, I wanted to make sure that it would work properly with the OXO ‘Soft-Clip’ finger clip module instead of the one I created for testing in my lab.  It  should work, but as a long-time engineer I have been bitten more than once by the difference between  should and  would! ;-).

So, Prof Anderson was gracious enough to bring a spare OXO clip to our next Outreach session, and since then I have had the opportunity to test this clip with my new circuit, as shown in the following photo.

OXO 'Soft-Clip' finger clip with new circuit in background

OXO ‘Soft-Clip’ finger clip with new circuit in background

After fiddling with the tension screw a bit, I got the Soft-Clip tension set properly for my finger, and lo-and-behold, the pulse detector circuit worked out quite nicely, as shown in the following short video clip (as you watch the clip, note that the IR beam from the IR LED is visible as a blue-white glow).

At this time I also made one other minor change.  In the original OSU circuit, the DC blocking capacitor (C2 in the schematic) was a 0.1uF, but in my circuit this value was changed to 0.01uF, because that’s all I had on hand.  In the meantime, however, I got some 0.1uF’s from Mouser, and so my final circuit as shown above incorporates a 0.1uF vice the original 0.01.

The next step in this project is to transfer the detector circuit from plugboard to a more permanent version on perfboard.  This will allow me to demonstrate the new circuit to Prof Anderson and the rest of the OSU STEM Outreach team, to lend credence to the idea of modifying this project’s documentation to eliminate the now-unneeded second supply.  Stay tuned!

Posted 10/24/2016

So, tonight I had the time to finish transferring the pulse detector circuit from my old trusty plugboard to a more permanent medium – i.e. perfboard.  The idea here is to provide the OSU STEM Outreach team with a working pulse detector circuit running from a single 9V battery, as a working example of my recommended modifications to the  circuit being used presently.  The image below shows the perfboard arrangement, and there is also a short video clip of the new pulse detector circuit in action.

The astute observer might notice there are only three wires going from the OXO ‘Soft-Clip’ assembly to the pulse detector circuit.  While I was wiring up the perfboard version, I realized I could eliminate one wire by simply moving the 100-Ohm IR LED current-limiting resistor from the anode (positive) side of the diode to the cathode (negative) end. This allowed me to connect the IR LED anode to the PhotoDiode cathode, and both to the +9V lead.  Implementing this change for all of the current stock of OXO clips may be more than the OSU STEM Outreach crew wants to take on, but I thought I would mention it ;-).  The finished schematic (with the transposed 100-Ohm resistor) is shown below

Final pulse detector schematic.  Note change to IR LED current limit resistor, and DC blocking capacitor

Final pulse detector schematic. Note change to IR LED current limit resistor, and DC blocking capacitor

 

Perfboard version of the single-supply pulse detector circuit

Perfboard version of the single-supply pulse detector circuit

The next (and hopefully final) step in all this is to 3D print a small box for the perfboard circuit.  Because I can’t help myself, I have decided to try printing  a transparent box – not a trivial undertaking for 3D printing.  Stay tuned!

Posted 10/25/2016

As mentioned above, 3D printing a transparent box is a non-trivial undertaking, at least with the current hobbyist FDM (Fused Deposition Modeling) materials and techniques.  After a number of iterations, the best I could do without a  lot of post-processing was a semi-transparent (but still pretty neat) container for the perfboard version of the ‘new-and-improved’ OSU Pulse Detector circuit.

As I have noted previously, the current 3D printing technology makes it easier, faster, and cheaper to go through a number of test cases (literally in this ‘case’!) on the way to a final product, rather than trying to design a final product all in one crack.  Each test takes about 15-30 minutes and just a few cents’ worth of material, and quite often the iterative process illuminates a design problem or opportunity that wasn’t obvious (or even considered) at the start.  In this case, it became apparent after about the 4th iteration that the perfboard should be mounted to the ‘lid’ via printed-on standoffs rather than to the ‘bottom’.

The TinkerCad model for the box and the lid is shown below, as well as the finished product and some of the precursor test boxes.  And, as usual, a short video of the final product.

Pulse Detector Box and lid. Note printed-on standoffs

Pulse Detector Box and lid. Note printed-on standoffs

OSU Pulse Detector Box and precursors

OSU Pulse Detector Box and precursors

Frank

 

 

OSU/STEM Outreach Pulse Detector Project

 

Posted 10/16/2016

A week or so ago I participated in an OSU STEM Outreach program that showed high-school students how to build a working pulse detector circuit, using a commonly available op-amp and an IR LED/Photodetector pair.  After an initial presentation, the students were given step-by-step instructions for building the circuit on a small plugboard, and I helped when students ran into trouble.  By the end of the one-hour session, most students were successful, and were able to see the output LED illuminate in time with their pulse – cool!

As I helped out with the class, I was a bit shocked to see that the circuit being build by the students required two 9V batteries wired in series to create a +/-9V supply for the op-amp. At the time I just assumed somebody forgot to spec the op-amp to be one with a common-mode range including ground, and the extra battery was the ‘field-expedient fix’ for the problem. When I asked Prof. Betty Lise Anderson about this, she said that a single supply had been tried at one point, but ‘didn’t work out’ for unspecified reasons.   This piqued my interest, so  decided I would investigate the problem a bit further in my home lab.

As it turned out, the op-amp being used in the students’ circuits was the ubiquitous dual-LM358  in an 8-pin DIP, and this unit does indeed have a common-mode range including ground, so  the single-supply idea should have worked.  Here’s the original OSU circuit (transcribed into DipTrace’s schematic capture format)

Original OSU Pulse Detector circuit.  Note the dual 9V suppies

Original OSU Pulse Detector circuit. Note the dual 9V suppies

And here’s my final single-supply detector circuit

Final single-supply Pulse Detector schematic

Final single-supply Pulse Detector schematic

Comparing the two, the only real difference is the addition of the 470K resistor from the inverting input to ground.  In the original circuit, the inverting input was tied directly to ground, while the non-inverting input had a 470K to ground.  This can be a problem, as the input bias current for the LM358 can be on the order of 100 X 10-9 (100 pico-Amp), which means that the DC voltage at  the non-inverting input due to bias currents could be as much as 50mV or so.  Since this is on the same order of magnitude as the photo-diode signal at this point, there is a real chance the op-amp would never toggle the output.  The dual-supply setup  eliminates  this problem, but at the cost of a second battery.

The final circuit, as laid out on my plug-board, is shown below.

Pulse Detector circuit with my 3D-printed finger socket

Pulse Detector circuit with my 3D-printed finger socket

Final Pulse Detector circuit

Final Pulse Detector circuit

And, because I can, here’s a short movie showing the pulse detector in action ;-).

Wall-E2 Charging Station, Part I

Posted 09/28/16

Ever since I started the Wall-E wall-following project, my goal has been to give Wall-E the ability to periodically recharge his battery without human intervention.  Then Wall-E would be free to roam the house indefinitely, striking fear into the hearts of humans and cats alike! ;-).

The concept for the Wall-E charging station has gone through  a lot of iterations, at least during my drifting-off-to-sleep conceptual design sessions.  Eventually I settled on a concept where Wall-E would be captured by some sort of lead-in railing which would force it onto a raised platform containing the charging power supply.   The platform would contain a set of spring-loaded contacts that would mate with contacts on the underside of Wall-E for charging power and for charging state control.

To start the process, I ran some tests to determine the basic requirements for the lead-in structure.  To support these tests, I modified Wall-E’s code to emulate its tracking behavior, but with an on-off push-button so I could run multiple tests without Wall-E running away.

As the following video snippet shows, my first idea of a low-sided lead-in wall was defeated in short order by Wall-E’s motor torque and soft, knobby wheels.

Speaker Amplifier Project, Part V

Posted 10 September 2016

Since my last post on this subject, I have actually gone through two revs of the PCB. The first set was fine electrically (and great quality AFAICT, but I didn’t get the physical border just right, and  I couldn’t file it down enough to fit without breaking a PCB run.  So, I went back to DipTrace, redid the board outline (which also involved some rejiggering of component placement and a bit of manual net editing) and sent off another order to Bay Area Circuits.  After returning from  a week at a duplicate bridge tournament in Atlanta  with my wife, the new rev boards were waiting for me – cool!  The image below shows the new board as installed on the Adafruit 20W amplifier board.

Rev2 PCB installed on Adafruit amplifier

Rev2 PCB installed on Adafruit amplifier

After ensuring that the PCB fit was OK, I populated it, checked all the net connections and resistor values and gave it the old smoke test – and of course it failed – ugh!  I quickly found that the problem was that common-mode range of the the MC748 dual op-amp I was using for the second system doesn’t include ground – oops!  A quick trip to the local Microcenter and the purchase of a wildly overpriced NTE928 dual op-amp solved that problem, but because I was I had soldered the op-amp package directly onto the board (I was  sure this was all going to work, after all), I was now faced with a messy removal and cleanup job.  After getting the old op-amp off and the PCB cleaned up, I installed the new one  (this time, suitably chastised, I installed a socket, and  then installed the op-amp).  The following image shows the finished PCB connected to the amp board, next to the hand-wired original.

Completed PCB connected to Adafruit amplifier

Completed PCB connected to Adafruit amplifier

Bottom of PCB and hand-wired original (note messy area around op-amp)

Bottom of PCB and hand-wired original (note messy area around op-amp)

The last thing to do was to get the PCB actually mounted onto the amplifier board, and the assembly into its custom-printed housing, as shown in the following images.

hand-wired and Rev2 PCB mounted to the Adafruit amp boards

hand-wired and Rev2 PCB mounted to the Adafruit amp boards

hand-wired and rev2 PCB mounted in custom-printed enclosures.

hand-wired and rev2 PCB mounted in custom-printed enclosures.

Now all I need is a ‘speaker’ presentation so I can find out if all this work was really worthwhile (actually, I’ve already had a great time with this project, so having it actually work for the students will just be icing on the cake!)

 

 

 

Giving Wall-E2 A Sense of Direction, Part X

Posted 15 August 2016

In my last post on this subject, I described a series of ‘field’ tests of the magnetometer on Wall-E2, my wall-following robot.  These tests demonstrated that the magnetometer was operating properly, but heading results were unusable due to significant distortion of the magnetic field along the west (garage-side) wall of the entry hallway.

This post describes a similar test in an interior hallway. The interior hallway in our home is oriented orthogonally to the entry hallway, i.e. at 110/290 deg magnetic. The walls are about 1 m wide, and constructed of standard wooden stud and sheet rock construction.  There are several rooms opening off this hallway, but all the entry doors were closed for this test.

As shown in the movie and the associated Excel chart, the robot starts at the west end headed east, travels the length of the hallway, maneuvers around for a while, and finishes up headed west.  During the first and last 10-15 seconds of the run, Wall-E2 is physically heading in a more or less constant direction (about 110 deg in the first part, about 290 deg in the last part).

Wall-E2 heading results from interior hallway run

Wall-E2 heading results from interior hallway run

Unfortunately, the Excel chart shows a different story.  During the first 15 seconds of the run, there is a definite linear change in the average heading, from about 25 deg to about 75 deg, even though the robot is physically tracking along a wall that is oriented at about 110/290 deg.  During the last 15 seconds or so, the opposite happens; there is a linear downward trend from about 300 deg to about 225 deg.   These trends are physically impossible, so the only possible explanation is that either the magnetometer readings are in error, or there is something in or near the interior hallway that is distorting the earth’s magnetic field enough to produce these results.

I had hoped that the interference noted in the previous post was due to the common wall with the garage and its associated metal structures,  and that the interior hallway would be free of such problems, but apparently this is not the case.  So, I’m now forced to consider other ideas for interior geo-location.

Stay tuned!

Frank